this post was submitted on 01 Jul 2025
434 points (98.9% liked)
Science Memes
15552 readers
2953 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- !abiogenesis@mander.xyz
- !animal-behavior@mander.xyz
- !anthropology@mander.xyz
- !arachnology@mander.xyz
- !balconygardening@slrpnk.net
- !biodiversity@mander.xyz
- !biology@mander.xyz
- !biophysics@mander.xyz
- !botany@mander.xyz
- !ecology@mander.xyz
- !entomology@mander.xyz
- !fermentation@mander.xyz
- !herpetology@mander.xyz
- !houseplants@mander.xyz
- !medicine@mander.xyz
- !microscopy@mander.xyz
- !mycology@mander.xyz
- !nudibranchs@mander.xyz
- !nutrition@mander.xyz
- !palaeoecology@mander.xyz
- !palaeontology@mander.xyz
- !photosynthesis@mander.xyz
- !plantid@mander.xyz
- !plants@mander.xyz
- !reptiles and amphibians@mander.xyz
Physical Sciences
- !astronomy@mander.xyz
- !chemistry@mander.xyz
- !earthscience@mander.xyz
- !geography@mander.xyz
- !geospatial@mander.xyz
- !nuclear@mander.xyz
- !physics@mander.xyz
- !quantum-computing@mander.xyz
- !spectroscopy@mander.xyz
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and sports-science@mander.xyz
- !gardening@mander.xyz
- !self sufficiency@mander.xyz
- !soilscience@slrpnk.net
- !terrariums@mander.xyz
- !timelapse@mander.xyz
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Uhm, yeah, but there's two different definitions of basis iirc. And i'm using the analytical definition here; you're talking about the linear algebra definition.
So I call an infinite dimensional vector space of countable/uncountable dimensions if it has a countable and uncountable basis. What is the analytical definition? Or do you mean basis in the sense of topology?
Uhm, i remember there's two definitions for basis.
The basis in linear algebra says that you can compose every vector v as a finite sum v = sum over i from 1 to N of a_i * v_i, where a_i are arbitrary coefficients
The basis in analysis says that you can compose every vector v as an infinite sum v = sum over i from 1 to infinity of a_i * v_i. So that makes a convergent series. It requires that a topology is defined on the vector space fist, so convergence becomes well-defined. We call such a vector space of countably infinite dimension if such a basis (v_1, v_2, ...) exists that every vector v can be represented as a convergent series.
Ah that makes sense, regular definition of basis is not much of use in infinite dimension anyways as far as I recall. Wonder if differentiability is required for what you said since polynomials on compact domains (probably required for uniform convergence or sth) would also work for cont functions I think.
yeah, that's exactly why we have an alternative definition for that :D
Differentiability is not required; what is required is a topology, i.e. a definition of convergence to make sure the infinite series are well-defined.
i just checked and there's official names for it: