Learning Rust and Lemmy

421 readers
1 users here now

Welcome

A collaborative space for people to work together on learning Rust, learning about the Lemmy code base, discussing whatever confusions or difficulties we're having in these endeavours, and solving problems, including, hopefully, some contributions back to the Lemmy code base.

Rules TL;DR: Be nice, constructive, and focus on learning and working together on understanding Rust and Lemmy.


Running Projects


Policies and Purposes

  1. This is a place to learn and work together.
  2. Questions and curiosity is welcome and encouraged.
  3. This isn't a technical support community. Those with technical knowledge and experienced aren't obliged to help, though such is very welcome. This is closer to a library of study groups than stackoverflow. Though, forming a repository of useful information would be a good side effect.
  4. This isn't an issue tracker for Lemmy (or Rust) or a place for suggestions. Instead, it's where the nature of an issue, what possible solutions might exist and how they could be or were implemented can be discussed, or, where the means by which a particular suggestion could be implemented is discussed.

See also:

Rules

  1. Lemmy.ml rule 2 applies strongly: "Be respectful, even when disagreeing. Everyone should feel welcome" (see Dessalines's post). This is a constructive space.
  2. Don't demean, intimidate or do anything that isn't constructive and encouraging to anyone trying to learn or understand. People should feel free to ask questions, be curious, and fill their gaps knowledge and understanding.
  3. Posts and comments should be (more or less) within scope (on which see Policies and Purposes above).
  4. See the Lemmy Code of Conduct
  5. Where applicable, rules should be interpreted in light of the Policies and Purposes.

Relevant links and Related Communities


Thumbnail and banner generated by ChatGPT.

founded 1 year ago
MODERATORS
1
20
submitted 5 months ago* (last edited 5 months ago) by [email protected] to c/[email protected]
 
 

We are officially finished with The Book. Now onto something that matters.

Today is an exploratory session to explore the lemmy codebase, see how well it's documented, and make targets for contribution.

If anyone's following along this week is dedicated to familiarizing ourselves with the codebase. Pull it down, set up our dev environment, run the code. After that pick a directory and attempt to explain a few functions to a duck. If a duck is not present find a google search result for the term "duck" will suffice.

As always, a stream will be available at the following link of myself doing this for around 2 hours starting one hour after this post is made. https://www.twitch.tv/deerfromsmoke

2
3
submitted 6 months ago* (last edited 6 months ago) by [email protected] to c/[email protected]
 
 

Welcome to week 31 of Reading Club for Rust’s “The Book” (“The Rust Programming Language”).

“The Reading”

Chapter 21:
https://rust-book.cs.brown.edu/ch18-03-pattern-syntax.html (the special Brown University version with quizzes etc)

The Twitch Stream

Starting today within the hour @[email protected] twitch stream on this chapter: https://www.twitch.tv/deerfromsmoke

https://www.youtube.com/watch?v=ou2c5J6FmsM&list=PL5HV8OVwY_F9gKodL2S31czb7UCwOAYJL (YouTube Playlist)

Be sure to catch future streams (will/should be weekly: https://www.twitch.tv/deerfromsmoke)

3
 
 
4
5
 
 

Intro

Having read through the macros section of "The Book" (Chapter 19.6), I thought I would try to hack together a simple idea using macros as a way to get a proper feel for them.

The chapter was a little light, and declarative macros (using macro_rules!), which is what I'll be using below, seemed like a potentially very nice feature of the language ... the sort of thing that really makes the language malleable. Indeed, in poking around I've realised, perhaps naively, that macros are a pretty common tool for rust devs (or at least more common than I knew).

I'll rant for a bit first, which those new to rust macros may find interesting or informative (it's kinda a little tutorial) ... to see the implementation, go to "Implementation (without using a macro)" heading and what follows below.

Using a macro

Well, "declarative macros" (with macro_rules!) were pretty useful I found and easy to get going with (such that it makes perfect sense that they're used more frequently than I thought).

  • It's basically pattern matching on arbitrary code and then emitting new code through a templating-like mechanism (pretty intuitive).
  • The type system and rust-analyzer LSP understand what you're emitting perfectly well in my experience. It really felt properly native to rust.

The Elements of writing patterns with "Declarative macros"

Use macro_rules! to declare a new macro

Yep, it's also a macro!

Create a structure just like a match expression

  • Except the pattern will match on the code provided to the new macro
  • ... And uses special syntax for matching on generic parts or fragments of the code
  • ... And it returns new code (not an expression or value).

Write a pattern as just rust code with "generic code fragment" elements

  • You write the code you're going to match on, but for the parts that you want to capture as they will vary from call to call, you specify variables (or more technically, "metavariables").
    • You can think of these as the "arguments" of the macro. As they're the parts that are operated on while the rest is literally just static text/code.
  • These variables will have a name and a type.
  • The name as prefixed with a dollar sign $ like so: $GENERIC_CODE.
  • And it's type follows a colon as in ordinary rust: $GENERIC_CODE:expr
    • These types are actually syntax specifiers. They specify what part of rust syntax will appear in the fragment.
    • Presumably, they link right back into the rust parser and are part of how these macros integrate pretty seamlessly with the type system and borrow checker or compiler.
    • Here's a decent list from rust-by-example (you can get a full list in the rust reference on macro "metavariables"):
      • block
      • expr is used for expressions
      • ident is used for variable/function names
      • item
      • literal is used for literal constants
      • pat (pattern)
      • path
      • stmt (statement)
      • tt (token tree)
      • ty (type)
      • vis (visibility qualifier)

So a basic pattern that matches on any struct while capturing the struct's name, its only field's name, and its type would be:

macro_rules! my_new_macro {
    (
        struct $name:ident {
            $field:ident: $field_type:ty
        }
    )
}

Now, $name, $field and $field_type will be captured for any single-field struct (and, presumably, the validity of the syntax enforced by the "fragment specifiers").

Capture any repeated patterns with + or *

  • Yea, just like regex
  • Wrap the repeated pattern in $( ... )
  • Place whatever separating code that will occur between the repeats after the wrapping parentheses:
    • EG, a separating comma: $( ... ),
  • Place the repetition counter/operator after the separator: $( ... ),+

Example

So, to capture multiple fields in a struct (expanding from the example above):

macro_rules! my_new_macro {
    (
        struct $name:ident {
            $field:ident: $field_type:ty,
            $( $ff:ident : $ff_type: ty),*
        }
    )
}
  • This will capture the first field and then any additional fields.
    • The way you use these repeats mirrors the way they're captured: they all get used in the same way and rust will simply repeat the new code for each repeated captured.

Writing the emitted or new code

Use => as with match expressions

  • Actually, it's => { ... }, IE with braces (not sure why)

Write the new emitted code

  • All the new code is simply written between the braces
  • Captured "variables" or "metavariables" can be used just as they were captured: $GENERIC_CODE.
  • Except types aren't needed here
  • Captured repeats are expressed within wrapped parentheses just as they were captured: $( ... ),*, including the separator (which can be different from the one used in the capture).
    • The code inside the parentheses can differ from that captured (that's the point after all), but at least one of the variables from the captured fragment has to appear in the emitted fragment so that rust knows which set of repeats to use.
    • A useful feature here is that the repeats can be used multiple times, in different ways in different parts of the emitted code (the example at the end will demonstrate this).

Example

For example, we could convert the struct to an enum where each field became a variant with an enclosed value of the same type as the struct:

macro_rules! my_new_macro {
    (
        struct $name:ident {
            $field:ident: $field_type:ty,
            $( $ff:ident : $ff_type: ty),*
        }
    ) => {
        enum $name {
            $field($field_type),
            $( $ff($ff_type) ),*
        }
    }
}

With the above macro defined ... this code ...

my_new_macro! {
    struct Test {
        a: i32,
        b: String,
        c: Vec<String>
    }
}

... will emit this code ...

enum Test {
    a(i32),
    b(String),
    c(Vec<String>)
}

Application: "The code" before making it more efficient with a macro

Basically ... a simple system for custom types to represent physical units.

The Concept (and a rant)

A basic pattern I've sometimes implemented on my own (without bothering with dependencies that is) is creating some basic representation of physical units in the type system. Things like meters or centimetres and degrees or radians etc.

If your code relies on such and performs conversions at any point, it is way too easy to fuck up, and therefore worth, IMO, creating some safety around. NASA provides an obvious warning. As does, IMO, common sense and experience: most scientists and physical engineers learn the importance of "dimensional analysis" of their calculations.

In fact, it's the sort of thing that should arguably be built into any language that takes types seriously (like eg rust). I feel like there could be an argument that it'd be as reasonable as the numeric abstractions we've worked into programming??

At the bottom I'll link whatever crates I found for doing a better job of this in rust (one of which seemed particularly interesting).

Implementation (without using a macro)

The essential design is (again, this is basic):

  • A single type for a particular dimension (eg time or length)
  • Method(s) for converting between units of that dimension
  • Ideally, flags or constants of some sort for the units (thinking of enum variants here)
    • These could be methods too
#[derive(Debug)]
pub enum TimeUnits {s, ms, us, }

#[derive(Debug)]
pub struct Time {
    pub value: f64,
    pub unit: TimeUnits,
}

impl Time {
    pub fn new<T: Into<f64>>(value: T, unit: TimeUnits) -> Self {
        Self {value: value.into(), unit}
    }

    fn unit_conv_val(unit: &TimeUnits) -> f64 {
        match unit {
            TimeUnits::s => 1.0,
            TimeUnits::ms => 0.001,
            TimeUnits::us => 0.000001,
        }
    }

    fn conversion_factor(&self, unit_b: &TimeUnits) -> f64 {
        Self::unit_conv_val(&self.unit) / Self::unit_conv_val(unit_b)
    }

    pub fn convert(&self, unit: TimeUnits) -> Self {
        Self {
            value: (self.value * self.conversion_factor(&unit)),
            unit
        }
    }
}

So, we've got:

  • An enum TimeUnits representing the various units of time we'll be using
  • A struct Time that will be any given value of "time" expressed in any given unit
  • With methods for converting from any units to any other unit, the heart of which being a match expression on the new unit that hardcodes the conversions (relative to base unit of seconds ... see the conversion_factor() method which generalises the conversion values).

Note: I'm using T: Into<f64> for the new() method and f64 for Time.value as that is the easiest way I know to accept either integers or floats as values. It works because i32 (and most other numerics) can be converted lossless-ly to f64.

Obviously you can go further than this. But the essential point is that each unit needs to be a new type with all the desired functionality implemented manually or through some handy use of blanket trait implementations

Defining a macro instead

For something pretty basic, the above is an annoying amount of boilerplate!! May as well rely on a dependency!?

Well, we can write the boilerplate once in a macro and then only provide the informative parts!

In the case of the above, the only parts that matter are:

  • The name of the type/struct
  • The name of the units enum type we'll use (as they'll flag units throughout the codebase)
  • The names of the units we'll use and their value relative to the base unit.

IE, for the above, we only need to write something like:

struct Time {
    value: f64,
    unit: TimeUnits,
    s: 1.0,
    ms: 0.001,
    us: 0.000001
}

Note: this isn't valid rust! But that doesn't matter, so long as we can write a pattern that matches it and emit valid rust from the macro, it's all good! (Which means we can write our own little DSLs with native macros!!)

To capture this, all we need are what we've already done above: capture the first two fields and their types, then capture the remaining "field names" and their values in a repeating pattern.

Implementation of the macro

The pattern

macro_rules! unit_gen {
    (
        struct $name:ident {
            $v:ident: f64,
            $u:ident: $u_enum:ident,
            $( $un:ident : $value:expr ),+
        }
    )
}
  • Note the repeating fragment doesn't provide a type for the field, but instead captures and expression expr after it, despite being invalid rust.

The Full Macro

macro_rules! unit_gen {
    (
        struct $name:ident {
            $v:ident: f64,
            $u:ident: $u_enum:ident,
            $( $un:ident : $value:expr ),+
        }
    ) => {
        #[derive(Debug)]
        pub struct $name {
            pub $v: f64,
            pub $u: $u_enum,
        }
        impl $name {
            fn unit_conv_val(unit: &$u_enum) -> f64 {
                match unit {
                $(
                    $u_enum::$un => $value
                ),+
                }
            }
            fn conversion_factor(&self, unit_b: &$u_enum) -> f64 {
                Self::unit_conv_val(&self.$u) / Self::unit_conv_val(unit_b)
            }
            pub fn convert(&self, unit: $u_enum) -> Self {
                Self {
                    value: (self.value * self.conversion_factor(&unit)),
                    unit
                }
            }
        }
        #[derive(Debug)]
        pub enum $u_enum {
            $( $un ),+
        }
    }
}

Note the repeating capture is used twice here in different ways.

  • The capture is: $( $un:ident : $value:expr ),+

And in the emitted code:

  • It is used in the unit_conv_val method as: $( $u_enum::$un => $value ),+
    • Here the ident $un is being used as the variant of the enum that is defined later in the emitted code
    • Where $u_enum is also used without issue, as the name/type of the enum, despite not being part of the repeated capture but another variable captured outside of the repeated fragments.
  • It is then used in the definition of the variants of the enum: $( $un ),+
    • Here, only one of the captured variables is used, which is perfectly fine.

Usage

Now all of the boilerplate above is unnecessary, and we can just write:

unit_gen!{
    struct Time {
        value: f64,
        unit: TimeUnits,
        s: 1.0,
        ms: 0.001,
        us: 0.000001
    }
}

Usage from main.rs:

use units::Time;
use units::TimeUnits::{s, ms, us};

fn main() {

    let x = Time{value: 1.0, unit: s};
    let y = x.convert(us);

    println!("{:?}", x);
    println!("{:?}", x);
}

Output:

Time { value: 1.0, unit: s }
Time { value: 1000000.0, unit: us }
  • Note how the struct and enum created by the emitted code is properly available from the module as though it were written manually or directly.
  • In fact, my LSP (rust-analyzer) was able to autocomplete these immediately once the macro was written and called.

Crates for unit systems

I did a brief search for actual units systems and found the following

dimnesioned

dimensioned documentation

  • Easily the most interesting to me (from my quick glance), as it seems to have created the most native and complete representation of physical units in the type system
  • It creates, through types, a 7-dimensional space, one for each SI base unit
  • This allows all possible units to be represented as a reduction to a point in this space.
    • EG, if the dimensions are [seconds, meters, kgs, amperes, kelvins, moles, candelas], then the Newton, m.kg / s^2 would be [-2, 1, 1, 0, 0, 0, 0].
  • This allows all units to be mapped directly to this consistent representation (interesting!!), and all operations to then be done easily and systematically.

Unfortunately, I'm not sure if the repository is still maintained.

uom

uom documentation

  • This might actually be good too, I just haven't looked into it much
  • It also seems to be currently maintained

F#

Interestingly, F# actually has a system built in!

6
 
 

The post mentions data or research on how rust usage in is resulting in fewer errors in comparison to C. Anyone aware of good sources for that?

7
 
 

A supplement to typical tutorials that caters to C programmers interested in learning how to be unsafe upfront.

Seems good from a quick skim. Also seems that the final lesson is that starting on the safe/happy path in rust doesn’t have to cost performance if you know what you’re doing.

8
3
submitted 8 months ago* (last edited 8 months ago) by [email protected] to c/[email protected]
 
 

Just a quick riff/hack on whether it'd be hard to make a collect() method that "collected" into a Vec without needing any turbofish (see, if you're interested, my prior post on the turbofish.

Some grasp of traits and iteration is required to comfortably get this ... though it might be a fun dive even if you're not

Background on collect

The implementation of collect is:

fn collect<B: FromIterator<Self::Item>>(self) -> B
where
    Self: Sized,
{
    FromIterator::from_iter(self)
}

The generic type B is bound by FromIterator which basically enables a type to be constructed from an Iterator. In other words, collect() returns any type that can be built from an interator. EG, Vec.

The reason the turbofish comes about is that, as I said above, it returns "any type" that can be built from an iterator. So when we run something like:

let z = [1i32, 2, 3].into_iter().collect();

... we have a problem ... rust, or the collect() method has no idea what type we're building/constructing.

More specifically, looking at the code for collect, in the call of FromIterator::form_iter(self), which is calling the method on the trait directly, rust has no way to determine which implementation of the trait to use. The one on Vec or HashMap or String etc??

Thus, the turbofish syntax specifies the generic type B which (somehow through type inference???) then determines which implementation to use.

let z = [1i32, 2, 3].into_iter().collect::<Vec<_>>();

IE: Use the implementation on Vec!

Why not just use Vec?

I figure Vec is used so often as the type for collecting an Iterator that it could be nice to have a convenient method.

The docs even hint at this by suggesting that calling the FromIterator::from_iter() method directly from the desired type (eg Vec) can be more readable (see FromIterator docs).

EG ... using collect:

let d = [1i32, 2, 3];
let x = d.iter().map(|x| x + 100).collect::<Vec<_>>();

Using Vec::from_iter()

let y = Vec::from_iter(d.iter().map(|x| x + 100));

As Vec is always in the prelude (IE, it's always available), using from_iter clearly seems like a nicer option here.

But you lose method chaining! So ... how about a method on Iterator, like collect but for Vec specifically? How would you make that and is it hard??

Making collect_vec()

It's not hard actually

  • Define a trait, CollectVec that defines a method collect_vec which returns Vec<Self::Item>
  • Make this a "sub-trait" of Iterator (or, make Iterator the "supertrait") so that the Iterator::collect() method is always available
  • Implement CollectVec for all types that implement Iterator by just calling self.collect() ... the type inference will take care of the rest, because it's clear that a Vec will be used.
trait CollectVec: Iterator {
    fn collect_vec(self) -> Vec<Self::Item>;
}

impl<I: Iterator> CollectVec for I {
    fn collect_vec(self) -> Vec<Self::Item> {
        self.collect()
    }
}

With this you can then do the following:

let d = [1i32, 2, 3];
let d2 = d.iter().map(|x| x + 1).collect_vec();

Don't know about you, but implementing such methods for the common collection types would suit me just fine ... that turbofish is a pain to write ... and AFAICT this isn't inconsistent with rust's style/design. And it's super easy to implement ... the type system handles this issue very well.

9
 
 

I hadn't thought about this until now. Handy.

Of course there's the f64 equivalent: std::f64::consts

10
 
 

You've gotta be familiar with Traits to try to work this out.

Just in case you want to try to work it out your self firstGotta say, after hearing that rust is not an OOP/Class-inheritance language, and is strongly and explicitly typed, the Deref trait feels like a helluva drug!

Obviously it's not the same thing, but working this out definitely had me making a couple of double takes.

Somewhat awkwardly, I worked it out through the standard lib docs before reading ch 15 of the book (it's more fun this way!).

And for those who want a quick answer:

  • Read the Deref docs, especially the deref coercion part
  • This allows a variable of a particular type to be implicitly substituted with another variable of a different type.
  • It happens any time a reference is passed in/out of a function, including self in method calls.
    • And obviously requires that Deref be implemented.
  • So sort() isn't implemented on Vec, it's implemented on the slice type ([T]).
  • But Vec implements Deref, substituting [T] for Vec<T> in all function/method calls.
  • Which means Vec gets all of the methods implemented on [T] ... almost like Vec is a subclass of [T]!
  • And yea, OOP people want to abuse this (see, eg, rust-unofficial on anti-patterns)
11
 
 

What?

I will be holding the fifteenth of the secondary slot/sessions for the Reading Club, also on "The Book" ("The Rust Programming Language"). We are using the Brown University online edition (that has some added quizzes & interactive elements).

Last time we began chapter 7 (Managing Growing Projects with Packages, Crates, and Modules), and read up through section 7.3 (Paths for Referring to an item in the Module Tree). This time we will start at section 7.4 (Bringing Paths Into Scope with the use Keyword).

Previous session details and recording can be found in the following lemmy post: https://jlai.lu/post/8006138

Why?

This slot is primarily to offer an alternative to the main reading club's streams that caters to a different set of time zone preferences and/or availability.

(also, obviously, to follow up on the previous session)

When ?

Currently, I intend to start at 18:00 UTC+2 (aka 6pm Central European Time) on Monday (2023-07-01). If you were present for a previous session, then basically the same time-of-day and day-of-week as that one was.

EDIT: here's the recording: https://youtu.be/RI4D62MVvCA

Please comment if you are interested in joining because you can't make the main sessions but would prefer a different start time (and include a time that works best for you in your comment!). Caveat: I live in central/western Europe; I can't myself cater to absolutely any preference.

How ?

The basic format is: I will be sharing my computer screen and voice through an internet live stream (hosted at https://www.twitch.tv/jayjader for now). The stream will be locally recorded, and uploaded afterwards to youtube (for now as well).

I will have on-screen:

  • the BU online version of The Book
  • a terminal session with the necessary tooling installed (notably rustup, cargo, and clippy)
  • some form of visual aid (currently a digital whiteboard using www.excalidraw.com)
  • the live stream's chat

I will steadily progress through the book, both reading aloud the literal text and commenting occasionally on it. I will also perform any code writing and/or terminal commands as the text instructs us to.

People who either tune in to the live stream or watch/listen to the recording are encouraged to follow along with their own copy of the book.

I try to address any comments from live viewers in the twitch chat as soon as I am aware of them. If someone is having trouble understanding something, I will stop and try to help them get past it.

Who ?

You! (if you're interested). And, of course, me.

12
 
 

This might be a more interesting dive into Rust for those with a fair amount of existing c and/or c++.

I tried it out myself a few years ago. I had fun reliving the nightmare of implementing doubly-linked lists in C back in school! I never made it to the end of the book, though; it got wayyyy more complex around halfway than I could process at the time.

13
 
 

Intro

Not long ago I posed a challenge for those of us learning rust: https://lemmy.ml/post/12478167.

Basically write an equivalent of git diff --no-index A B ... a file differ.

While it's never too late to attempt it, I figured it'd be a good time to check in to see what anyone thought of it, in part because some people may have forgotten about it and would still like to have a shot, and also because I had a shot and am happy with what I wrote.

Check In

I'll post where I got up to below (probably as a comment), but before that, does anyone have anything to share on where they got up to ... any general thoughts on the challenge and the general idea of these?

My experience

My personal experience was that I'd not kept up with my rust "studies" for a bit and used this as a good "warm up" or "restart" exercise and it worked really well. Obviously learning through doing is a good idea, and the Rust Book is a bit too light, IMO, on good exercises or similar activities. But I found this challenge just difficult enough to make me feel more comfortable with the language.

Future Challenges

Any ideas for future challenges??

My quick thoughts

  • A simple web app like a todo app using axtix_web and diesel and some templating crate.
  • Extend my diffing program to output JSON/HTML and then to diff by characters in a string
  • A markdown parser??
14
 
 

Hi! Welcome to Learning Rust and Lemmy!

This community started from the realisation that there are probably a fair few people interested in learning Rust and in contributing to Lemmy but just don't quite know where to start and are struggling to get going on their own. See the post where I first suggested the idea.

So ... why not get all those people together and start a cooperative learning and tinkering community? Well here we are!

This is intended to be a space where people at any level can come and try to learn Rust together, learn about the Lemmy code base together, discuss whatever confusions or difficulties they're having in these endeavours and work together on solving problems, including, maybe, some contributions back to the Lemmy code base.

So checkout some of the general discussions, the meta discussion on how this place can or should work, and enjoy!