Hey again! First of all, thank you for continuing to engage with me in good faith and for your detailed replies. We may differ in our opinions on the topic but I'm glad that we are able to have a constructive and friendly discussion nonetheless :)
I agree with you that LLMs are bad at providing citations. Similarly they are bad at providing urls, id numbers, titles, and many other things that require high accuracy memorization. I don't necessarily agree that this is a definite proof of their incapability to understand.
In my view, LLMs are always in an "exam mode". That is to say, due to the way they are trained, they have to provide answers even if they don't know them. This is similar to how students act when they are taking an exam - they make up facts not because they're incapable of understanding the question, but because it's more beneficial for them to provide a partially wrong answer than no answer at all.
I'm also not taking a definitive position on whether or not LLMs have capability to understand (IMO that's pure semantics). I am pushing back against the recently widespread idea that they provably don't. I think LLMs have some tasks that they are very capable at and some that they are not. It's disingenuous and possibly even dangerous to downplay a powerful technology under a pretense that it doesn't fit some very narrow and subjective definition of a word.
And this is unfortunately what I often see here, on other lemmy instances, and on reddit - people not only redefining what "understand", "reason", or "think" means so that generative AI falls outside of it, but then using this self-proclaimed classification to argue that they aren't capable of something else entirely. A car doesn't lose its ability to move if I classify it as a type of chair. A bomb doesn't stop being dangerous if I redefine what it means to explode.
Do you think an LLM understands the idea of truth?
I don't think it's impossible. You can give ChatGPT a true statement, instruct it to lie to you about it, and it will do it. You can then ask it to point out which part of its statement was a lie, and it will do it. You can interrogate it in numerous ways that don't require exact memorization of niche subjects and it will generally produce an output that, to me, is consistent with the idea that it understands what truth is.
Let me also ask you a counter question: do you think a flat-earther understands the idea of truth? After all, they will blatantly hallucinate incorrect information about the Earth's shape and related topics. They might even tell you internally inconsistent statements or change their mind upon further questioning. And yet I don't think this proves that they have no understanding about what truth is, they just don't recognize some facts as true.
This is partially true and partially not. It's true that LLMs can't learn anything wildly novel, because they are not flexible enough for this. But they can process new information, in fact they do it all the time. You can produce conversations that no one had before, and yet LLMs like ChatGPT will respond to it appropriately. This is more than just shape matching.
In fact, there are techniques like Few-Shot Learning and Chain of Thought that rely on the LLMs' ability to learn from context and revise its own answers.
IMO citation problem is not testing capability to understand. It's testing knowledge, memorization, and ability to rate its own confidence. Keep in mind that ChatGPT and most other LLMs will tell you when they perform web searches - if they don't then they're likely working off context alone. Enabling web search would greatly increase the accuracy of LLM's answers.
Unlike LLMs we have somewhat robust ability to rate how confident we are about our recollections, but even in humans memory can be unreliable and fail silently. I've had plenty of conversations where I argue with someone about something that one of us remembers happening and the other one is certain didn't happen - or happened differently. Without lies or misunderstandings, two people who had at some point memorized the same thing can later on confidently disagree on the details. Human brains are not databases and they will occasionally mangle memories or invent concepts that don't exist.
And even that is completely skipping over people with mental disorders that affect their thinking patterns. Is someone with psychosis incapable of understanding anything because they hold firm beliefs on things that cannot be traced to any source? Are people with frontal lobe damage who develop intense confabulations incapable of understanding? How about compulsive liars? Are you willing to label a person or an entire demographic as incapable of understanding if they fail your citation test?
There are techniques like Chain of Thought that make LLMs think before generating response. Those systems will be able to tell you how they arrived at the conclusion.
But humans are also fairly prone to rationalization after the fact. There was a famous experiment on people who had to have functional hemispherectomy for medical reasons, where the left hemisphere makes up an explanation for right hemisphere's choices despite not knowing the true reason:
"Each hemisphere was presented a picture that related to one of four pictures placed in front of the split-brain subject. The left and the right hemispheres easily picked the correct card. The left hand pointed to the right hemisphere’s choice and the right hand to the left hemisphere’s choice. We then asked the left hemisphere, the only one that can talk, why the left hand was pointing to the object. It did not know, because the decision to point was made in the right hemisphere. Yet it quickly made up an explanation. We dubbed this creative, narrative talent the interpreter mechanism."