Akisamb

joined 2 years ago
MODERATOR OF
[–] [email protected] 2 points 6 months ago (1 children)

Par pitié, arrêtons de confondre Arabe et musulmans. Je ne sais même pas si la majorité des Arabes vivant en France sont religieux.

[–] [email protected] 1 points 7 months ago

Tu as des subsides pour la LAMAL. Pour vivre à 1300 tu es obligé de les utiliser.

Je confirme 1300 c'est obligatoirement une colocation ou en couple et tu ne vas jamais au restaurant.

Mais à 4000 tu n'as plus toutes ces contraintes. Quand j'ai touché 3600 CHF pour la première fois j'avais vraiment l'impression d'être riche. Je pouvais aller au restaurant tous les jours, partir à l'autre bout de l'Europe sur un coup de tête etc...

[–] [email protected] 0 points 7 months ago (3 children)

4000 balles et c’est la galère avec ça

Faut pas abuser, j'ai vécu il y a 3 ans avec 1300 balles par mois à Lausanne et c'était pas si juste que ça.

4000 tu as une assez bonne qualité de vie.

J'ajouterai que ça dépend des cantons, je connais des gens dans le Valais qui ne gagnent que 2800 CHF par mois en travaillant a plein temps (41h semaine).

[–] [email protected] 11 points 8 months ago (5 children)

They've got thunderbird which is as far as I know the only serious alternative to outlook.

[–] [email protected] 1 points 9 months ago

Same issue here.

 

cross-posted from: https://lemmy.one/post/13942290

Abstract: We present Scallop, a language which combines the benefits of deep learning and logical reasoning. Scallop enables users to write a wide range of neurosymbolic applications and train them in a data- and compute-efficient manner. It achieves these goals through three key features: 1) a flexible symbolic representation that is based on the relational data model; 2) a declarative logic programming language that is based on Datalog and supports recursion, aggregation, and negation; and 3) a framework for automatic and efficient differentiable reasoning that is based on the theory of provenance semirings. We evaluate Scallop on a suite of eight neurosymbolic applications from the literature. Our evaluation demonstrates that Scallop is capable of expressing algorithmic reasoning in diverse and challenging AI tasks, provides a succinct interface for machine learning programmers to integrate logical domain knowledge, and yields solutions that are comparable or superior to state-of-the-art models in terms of accuracy. Furthermore, Scallop's solutions outperform these models in aspects such as runtime and data efficiency, interpretability, and generalizability.

 

cross-posted from: https://lemmy.ml/post/13088944

 

Was looking at EAP6 release notes and was pleasantly surprised to see this there.

I'm quite happy that intellij provides on premise solutions, it gives a small chance of this coming to my job one day. I believe this will be quite useful for repetitive code and certain types of tests.