About 4 years ago, this video showed that a ML model can be used to cut costs on physics simulations. It’s about time we did that with weather too.
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
It's not just about cutting costs, but also improving accuracy. Physical simulations factor in a dozen or so weather conditions to predict outcomes. Machine learning can track thousands of conditions, drawing connections not realized in physical models, leading to much more accurate statistical models.
what’s perhaps most striking about GenCast is that it requires significantly less computing power than traditional physics-based ensemble forecasts like ENS. According to Google, a single one of its TPU v5 tensor processing units can produce a 15-day GenCast forecast in eight minutes. By contrast, it can take a supercomputer with tens of thousands of processors hours to produce a physics-based forecast.
If true this is extremely impressive, but this is their own evaluation, so it may be biased.